内容简介
目 录
前 言
上架建议
作者简介
获奖信息
编辑推荐
配套资源
音视频专区
本书详细介绍了强化学习的理论推导、算法细节。全书共12章,包括强化学习概述、马尔可夫决策过程、退化的强化学习问题、环境已知的强化学习问题、基于价值的强化学习算法、基于策略的强化学习算法、AC型算法、基于模型的强化学习算法等相关知识。本书系统性强、概念清晰,内容简明通俗。除了侧重于理论推导,本书还提供了许多便于读者理解的例子,以及大量被实践证明有效的算法技巧,旨在帮助读者进一步了解强化学习领域的相关知识,提升其现实中的工程能力。本书可作为高等院校数学、计算机、人工智能等相关专业的强化学习教材,但需要有机器学习、深度学习等前置课程作为基础。